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Otto Toeplitz Felix Hausdorff



1918: Otto Teplitz, Das algebraische Analogon zu einem Satze
von Fejér, Math. Z.

1919: Felix Hausdorft, Der Wertvorrat einer Bilinearform,
Math. Z.



Quaternions

v

H: Skew-field of Hamilton quaternions.

An element g € H is of the form q = qo + g1/ + g2j + g3k,
where i, j, k are fundamental quaternion units satisfying:

i2=j%=k>=—1=jjk.

Re(q) = qo, Im(q) = q1i + q2j + g3k and § = Re(q) — Im(q).

The modulus of q is, |g| = \/qg + g% + g3 + g3 and the
imaginary unit sphere is, S = {q €H: Re(q) =0,|q| = 1}.

For each m € S, the slice C, := {a+ bm: a,be R} = C.

If g € H, then g = qo + mg|Im(q)|, where mq = \;%EZ% eS.



Quaternions

» For p,q € H, define p ~ q if and only if p = s~ 1gs, for
some s € H\ {0}.

> It is an equivalence relation on H and the equivalence class,

[q) = {p € H: Re(p) = Re(q), |Im(p)| = |Im(q)|}

Note that [q] N C = {Re(q) £ i|Im(q)|} for every g € H.



Quaternions

» For p,q € H, define p ~ q if and only if p = s~ 1gs, for
some s € H\ {0}.

> It is an equivalence relation on H and the equivalence class,

[q) = {p € H: Re(p) = Re(q), |Im(p)| = |Im(q)|}

Note that [q] N C = {Re(q) £ i|Im(q)|} for every g € H.
Definition

1. A subset K C H is said to be circular or azially symmetric
if [q] € K for all g € K.

2. For V C C, the circularization Qy is defined by

Qy = {a+mb: a—i—ibGV,mES}.



Quaternionic numerical range

> H" is a right H-module and the innerproduct is given by,

{(xi Zx,y,, (xi), (vi) € H".

» The unit sphere in H" is, Sy» = {X eH": ||X| = 1}_



Quaternionic numerical range

> H" is a right H-module and the innerproduct is given by,

{(xi Zx,y,, (xi), (vi) € H".

» The unit sphere in H" is, Sy» = {X eH": ||X| = 1}_

Definition
The quaternionic numerical range of A € M,(H) is defined by

WH(A) = {<X,AX>H X € SHn}

It is a compact and circular subset of H.



Is Wg(A) convex?

Example:

k 00
Let A= |0 1 0| & Ms(H).
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3x3

0
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¢ Wi (A).

Then k, —k € Wi (A), but 0



Is Wg(A) convex?

Example:

k 00
Let A= [0 1 0 e Ms(H).
00 1,
x3

Then k, —k € Wig(A), but 0 ¢ Wi(A).

To see this: Suppose 0 = (X, AX)y for X = (x1,x2, x3) € Sps,
then
Xrkxq + \x2|2 + ]x;:,|2 =0.

This is a contradiction, since Re(X1kx1) = 0.

So, the quaternionic numerical range is not necessarily convex.
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with quaternion coefficients, Proc. Roy. Irish Acad.
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» The study of the convexity of Wg(A) as a subset of H has
begun by Kippenhahn and later followed by Wiegmann.

1951: R. von Kippenhahn, Uber den Wertevorrat einer Matriz,
Math. Nachr.

1955: N. A. Wiegmann, Some theorems on matrices with real
quaternion elements, Canad. J. Math.



History

» J.E. Jamison proposed a problem to characterize the class
of linear operators on quaternionc Hilbert space with
convex numerical range.

1972: J.E. Jamison, Numerical Range and Numerical Radius in
Quaternionic Hilbert spaces, Doctoral Dissertation, Univ. of
Missouri.

» Propoerties of Wig(A) NR and Wig(A) N C are well studied.

1984: Au-Yeung, On the convezity of numerical range in
quaternionic Hilbert spaces, Linear Multilinear Alg.
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1993: F. Zhang, Permanant Inequalities and Quaternion
matrices, Ph.D. Dissertataion, Univ. of California at Santa
Barbara.

1994: W. So, R. C. Thompson and F. Zhang, Numerical ranges
of matrices with quaternion entries, Linear and Multilinear Alg.

1995: F. Zhang, On Numerical Range of Normal matrices of
Quaternions, J. Math. Physical Sciences.

» So and Thompson gave a proof (65 pages long).

1996: W. So and R.C. Thompson, Convexity fo the upper
complex plane part of the numerical range of a quternion
matriz, Linear Multilinear Alg.



History

> In 1997, Zhang posed three questions.

Question 1 : Is there a short and conceptual proof to show that
Wi (A) N CT is convex ?

Question 2 : How is Wyg(A) N C related to corresponding
complex matrix ?

Question 3: Investigate Wig(A) and Wig(A) N CT when A is
bounded linear operator on infinite dimensional right
quaternionic Hilbert space?

1997: F. Zhang, Quaternions and matrices of quaternions,
Linear algebra Appl.



Relation with complex matrices

Definition
Let A € M,(H). Then

1. for every m € S, Wig(A) N C} is called C,,-section of
Wi (A). In particular,

Wi (A) == W(A)nC*.

2. Wg(A:C):= {Co(q) i q€ WH(A)}, where
co(q) = qo + qui.



Relation with complex matrices

Definition
Let A € M,(H). Then

1. for every m € S, Wig(A) N C} is called C,,-section of
Wi (A). In particular,

Wi (A) == W(A)nC*.

2. Wg(A:C):= {Co(q) i q€ WH(A)}, where
co(q) = qo + qui.
Note that if A € M,(H),then A= A; + Az j, for A1, Ay € M,(C).

Define
[ At A

Xa= —Ay A

:| € My,(C).
2nx2n



Relation with complex matrices

Theorem (S., 2019)
Let A€ Mn(H) Then WH(A : (C) = W(C(XA).



Relation with complex matrices

Theorem (S., 2019)
Let A € Mn(H) Then WH(A : (C) = W(c(XA).

» This mplies that Wi(A) € Qu(x,)- The equality may not
hold.



Relation with complex matrices

Theorem (S., 2019)
Let A € Mn(H) Then W]H[(A : (C) = W(c(XA).

» This mplies that Wi(A) € Qu(x,)- The equality may not

hold.
. 0 1
Example: Let A=/ € H, then X4 = [_1 0] € My(C) and
1 1
(|2 0 1HVEly g
L1 0| || /u T
V2 V2

That is, 0 € Quy,(x,), but 0 ¢ Wi(A) since j € S.



Connectedness properties

Theorem (Au-Yeung, 1984)
Let A € M,(H). Then
1. for any a € R, the set {X € Spn : (X, AX)m = a} is
connected if A = A*
2. the set {X € Spn : (X, AX)g = 0} is connected if A= —A*.



Connectedness properties

Theorem (Au-Yeung, 1984)
Let A € M,(H). Then
1. for any a € R, the set {X € Spn : (X, AX)m = a} is
connected if A = A*
2. the set {X € Spn : (X, AX)g = 0} is connected if A= —A*.

Corollary

Let A € M,(H). Then Wig(A) NR is either empty set or
connected.

Proof
Since A= Z(A+ A*) + (A — A*), we see that

WH(A) NR = {X € Sy : <X,(A— A*)X>H = 0}

From above Theorem, It follows that Wg(A) NR is connected.



Connectedness properties

Lemma (S., 2019)

Let A € M,(H) and let L be any line parallel to Y-axis. Then
Wi (A) N L is connected.

Proposition (S., 2019)
Let V be a finite subset of C. Then

COI?V(Qv) = COHV(QCO,,V(V)).

Here Conv(-) is an abbreviation for ‘Convex hull of’.



Result for M,(H)

Lemma (S., 2019)
Let A € Mp(H). Then every section of Wgg(A) is convex.



Result for M,(H)

Lemma (S., 2019)
Let A € Mp(H). Then every section of Wgg(A) is convex.

proof

By the canonical form of [Brenner, 1951] there exist a unitary
U € My(H) such that

0 Z2

for some p € H and z;,z0 € CT.



Result for M,(H)

Lemma (S., 2019)
Let A € Mp(H). Then every section of Wgg(A) is convex.

proof

By the canonical form of [Brenner, 1951] there exist a unitary
U € My(H) such that

A=U* |t Ply

0 Z2 ’
for some p € H and z;,z, € CT. Now we show that the
z1

quaternionic numerical range of [0

p] is convex. Let
z2

[;] € Sgz. Then consider the following cases.



Result for M,(H)

Case(l): zy =z =z:=a+ib, p=0
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Result for M,(H)

Case(l): zz =z =z:=a+ib, p=0

B0 s ] (] = st + v+ b

where m, , = Xix + yiy. Clearly, Re(my,) =0 and |m,,| < 1.
That is,

{mey: IxP+|yP =1} C{qgeH: Re(q) =0, |q| <1}.

If g € H\ {0} such that Re(q) =0 and |g| < 1, then 3s#0

with s~ 1lis = ﬁ. Take

Vo2 sl 2 s




Result for M,(H)

Then |x|? + |y|?> =1 and my, = q.



Result for M,(H)

Then [x2 + [y[2 = 1 and my, = q.
If g = 0, then by choosing x = %,y :j% we get my, = 0.
This shows that

{mey  IXP+|y?=1}={q€H:Re(q) =0, |q| <1}.
Therefore,

Wi(A) = {a+ bm: Re(m) =0 with 0 < |m| < 1}.



Result for M,(H)

Then [x2 + [y[2 = 1 and my, = q.
If g = 0, then by choosing x = %,y :j% we get my, = 0.
This shows that

{mey  IXP+|y?=1}={q€H:Re(q) =0, |q| <1}.
Therefore,
Wig(A) = {a+ bm: Re(m) = 0with 0 < [m| < 1}.

It is the solid sphere in R* with radius b and center at
(2,0,0,0). So Wig(A) is convex.

In particular, Wy (A) is the line segment joining Re(z) and z,
which is convex.



Result for M,(H)

Graph of Wi (A):

re(z)
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Case(2): z1 = a1 + ib1,zp = ap + ibp,p =0
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Case(2): z1 = a1 + ib1,zp = ap + ibp,p =0

ai+ib Io)
<m ’ [ 1 OI 1 az+,b2} [ :|>IHI a1|x|*+a|y|>+ by Xix+boyiy.



Result for M,(H)

Case(2): z1 = a1 + ib1,zp = ap + ibp,p =0

ai+ib Io)
<m ’ [ 1 OI 1 az+,b2} [ :|>IHI a1|x|*+a|y|>+ by Xix+boyiy.

Suppose its imaginary part is zero, i.e.,
biXix = —byyiy. (1)

Since |x|2 + |y|?> = 1, we get

| b by

From Equations (1), (2), we get

xLix +y~tiy =0. (3)



Result for M,(H)

In fact, Equation (1) < Equations (2) & (3).



Result for M,(H)

In fact, Equation (1) < Equations (2) & (3). The only choice is,
by by
X =4/ Ly = .
b1 + b Y b1 + b2

a]_b2 + 32b1 }
bi+ by 1

Therefore,

Wig(A) NR = {v =



Result for M,(H)

In fact, Equation (1) < Equations (2) & (3). The only choice is,
\/T \/7
X = ,
by + b2
Therefore,
a]_b2 + az b1
Wig(A) N R = {v = 7}
H( ) by + by

Claim: Wi (A) = Conv({z1,2,v}).
In particular, if we take x,y € C with [x? + |y|*> = 1, then
z1|x[” + 22|y [* € Wy (A).



Result for M,(H)

We show that the line segment joining v and z; is in W (A).

Let uy := a1(1 — t) + vt, Xt:1/2§ ;’i and y; = %for
t €[0,1]. Then |x¢|? + [y¢|*> = 1 with

( [xt} , [al —IC—) iby 0 ] |:Xt:| Vo = (a1 + iby)(1 — t) + vt.

Yt as+iba| |yt

Similarly, the line joining v and z is in W,} (A).



Result for M,(H)

We show that the line segment joining v and z; is in W (A).

Let uy := a1(1 — t) + vt, Xt:1/2§ ;’i and y; = %for
t €[0,1]. Then |x¢|? + [y¢|*> = 1 with

< [;j ’ {al J(r) ” a E ibz] [;j Ju = (a1 +ib1)(1 — t) + vt.

Similarly, the line joining v and z is in W,}(A). By the fact
that Wy (A) N L is connected, we get that

Conv({z1,z2,v}) C W (A).
Finally, the equality holds since

W]I:I!_(A) g Conv(Q{Zl,Zg,V}) = Conv(QCOI‘!V({Zl,ZQ,V}))'



Result for M,(H)

Graph Of W]I:iﬂ_(A)'




Result for M,(H)

Case(3): z1 =z =0.



Result for M,(H)

Case(3): z1 =z = 0.
By Young’s Inequality, we have

(Bl & Bel =

Ix|? + |y[?
<|p|- 5
Pl
5



Result for M,(H)

Case(3): z1 =z = 0.
By Young’s Inequality, we have

G L]l

X2 + |yl?
<|lpl- 5

_ el
5
Let |p| = 1. Then for any q with |q| < 1, we have
q= re’"qe, 0<r< % where mg = %. If we choose
x = e M cosa and y = p~Lsina such that sin 2a = 2r < 1 and

0 <a< 7, then xpy = q.



Result for M,(H)

It shows that Wy(A) ={ge H: |q| < %} If |p| # 1, then we

have
0 ])Ipl {qu |q|<’p‘}

0

o3lo

Wy (A) = WH< [

Therefore,

Wi (A) = {z eCt: |z < ’2"}
p

It is the upper half of the disc with radius 5.



Result for M,(H)

Graph of W (A):

=] 5 = = E DA



Result for M,(H)

Case(4): z1 = a1 + ib1,zp = ap + iboy, p # 0

: I . + Z1 0 + L

Slncer.—{u—|—7'. ue WH([O Zz]),TG(C with |7| < 2}
) is

is convex and Wy (A) N L is connected, it shows that Wy (A
convex.

Graph of Wi (A): Tt is clear that for any A\ € W (A), we have

A = Xz1x + yzoy + Xpy, for some [ﬂ € S

and )| < max{|2, 2]} + 5.
Therefore, Wi (A) is a convex subset of upper half of the disc

: : — lp|
with radius R := max{|z1], |z|} + & .



Result for M,(H)

There is no guarantee that either Re(p) + |Im(p)|i or %i lies in

Wit (A). The following are the examples of three different
possibilities.



Result for M,(H)

There is no guarantee that either Re(p) + |Im(p)|i or %i lies in

Wi (A). The following are the examples of three different
possibilities.

Example 1

Ifzy =—1+1i,zp=1+iand p =3 — 4k, then 3+ 4i ¢ W (A),
but Bli = 3/ € Wi (A).




Result for M,(H)

Example 2
If 1y =344i,20 =20+ i, p = 16/, then

neither re(p) + |im(p)|i = 16/ nor |’2’|/ = 8i lies in W (A).

21

022




Result for M,(H)

Example 3
Let zz =3+4i,zp=—-2+5/and p=1—, then

re(p) + |im(p)|i = 14 i € W4 (A), but =i = —




Toeplitz-Hausdorff like theorem

Theorem (S., 2019)
Let A € M,(H). Then every section of Wig(A) is convex.

Proof
Suppose z, w € WE(A), then

z=(X,AX)m, w=(Y,AY)n

for some X, Y € Syn. We show that the line segment joining z
and w contained in W (A). Let V be the two-dimensional
subspace generated by z, w, which is isomorphic to H? and let
P be the projection of H? onto V.



Toeplitz-Hausdorff like theorem

Then PAP|,, € My(H) with
(X, PAPX)y = z, (Y, PAPY )y = w.

This shows that z, w € Wi (PAP|,,). Since Wif (PAP|,,) is
convex (from previous Lemma), the line segment joining z and
w is contined in Wﬁr(PAP|V) C W (A).

Hence Wi (A) is convex.
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