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Quaternions

I H: Skew-field of Hamilton quaternions.

I An element q ∈ H is of the form q = q0 + q1i + q2j + q3k ,
where i , j , k are fundamental quaternion units satisfying:

i2 = j2 = k2 = −1 = ijk.

I Re(q) = q0, Im(q) = q1i + q2j + q3k and q = Re(q)− Im(q).

I The modulus of q is, |q| =
√
q20 + q21 + q22 + q23 and the

imaginary unit sphere is, S =
{
q ∈ H : Re(q) = 0, |q| = 1

}
.

I For each m ∈ S, the slice Cm := {a + bm : a, b ∈ R} ∼= C.

I If q ∈ H, then q = q0 + mq|Im(q)|, where mq = Im(q)
|Im(q)| ∈ S.



Quaternions

I For p, q ∈ H, define p ∼ q if and only if p = s−1qs, for
some s ∈ H \ {0}.

I It is an equivalence relation on H and the equivalence class,

[q] =
{
p ∈ H : Re(p) = Re(q), |Im(p)| = |Im(q)|

}
.

Note that [q] ∩ C =
{
Re(q)± i |Im(q)|

}
for every q ∈ H.

Definition

1. A subset K ⊂ H is said to be circular or axially symmetric
if [q] ∈ K for all q ∈ K.

2. For V ⊆ C, the circularization ΩV is defined by

ΩV :=
{
a + mb : a + ib ∈ V,m ∈ S

}
.
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Quaternionic numerical range

I Hn is a right H-module and the innerproduct is given by,

〈
(xi ), (yi )

〉
H =

n∑
i=1

xiyi , ∀ (xi ), (yi ) ∈ Hn.

I The unit sphere in Hn is, SHn =
{
X ∈ Hn : ‖X‖ = 1

}
.

Definition
The quaternionic numerical range of A ∈ Mn(H) is defined by

WH(A) =
{
〈X ,AX 〉H : X ∈ SHn

}
.

It is a compact and circular subset of H.
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Is WH(A) convex?

Example:

Let A =

k 0 0
0 1 0
0 0 1


3×3

∈ M3(H).

Then k ,−k ∈WH(A), but 0 /∈WH(A).

To see this: Suppose 0 = 〈X ,AX 〉H for X = (x1, x2, x3) ∈ SH3 ,
then

x1kx1 + |x2|2 + |x3|2 = 0.

This is a contradiction, since Re(x1kx1) = 0.

So, the quaternionic numerical range is not necessarily convex.
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History

I J.E. Jamison proposed a problem to characterize the class
of linear operators on quaternionc Hilbert space with
convex numerical range.

1972: J.E. Jamison, Numerical Range and Numerical Radius in
Quaternionic Hilbert spaces, Doctoral Dissertation, Univ. of
Missouri.

I Propoerties of WH(A) ∩ R and WH(A) ∩ C are well studied.

1984: Au-Yeung, On the convexity of numerical range in
quaternionic Hilbert spaces, Linear Multilinear Alg.
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History

I In 1997, Zhang posed three questions.

Question 1 : Is there a short and conceptual proof to show that
WH(A) ∩ C+ is convex ?

Question 2 : How is WH(A) ∩ C related to corresponding
complex matrix ?

Question 3: Investigate WH(A) and WH(A) ∩ C+ when A is
bounded linear operator on infinite dimensional right
quaternionic Hilbert space?

1997: F. Zhang, Quaternions and matrices of quaternions,
Linear algebra Appl.



Relation with complex matrices

Definition
Let A ∈ Mn(H). Then

1. for every m ∈ S, WH(A) ∩ C+
m is called Cm-section of

WH(A). In particular,

W+
H (A) := WH(A) ∩ C+.

2. WH(A : C) :=
{
co(q) : q ∈WH(A)

}
, where

co(q) = q0 + q1i .

Note that if A ∈ Mn(H),then A = A1 + A2 j , for A1,A2 ∈ Mn(C).
Define

χA =

[
A1 A2

−A2 A1

]
2n×2n

∈ M2n(C).
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Relation with complex matrices

Theorem (S., 2019)

Let A ∈ Mn(H). Then WH(A : C) = WC(χA).

I This mplies that WH(A) ⊆ ΩWC(χA). The equality may not
hold.

Example: Let A = j ∈ H, then χA =

[
0 1
−1 0

]
∈ M2(C) and

〈[ 1√
2
1√
2

]
,

[
0 1
−1 0

] [ 1√
2
1√
2

]〉
H

= 0.

That is, 0 ∈ ΩWC(χA), but 0 /∈WH(A) since j ∈ S.
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Connectedness properties

Theorem (Au-Yeung, 1984)

Let A ∈ Mn(H). Then

1. for any α ∈ R, the set {X ∈ SHn : 〈X ,AX 〉H = α} is
connected if A = A∗

2. the set {X ∈ SHn : 〈X ,AX 〉H = 0} is connected if A = −A∗.

Corollary

Let A ∈ Mn(H). Then WH(A) ∩ R is either empty set or
connected.

Proof
Since A = 1

2(A + A∗) + 1
2(A− A∗), we see that

WH(A) ∩ R =
{
X ∈ SHn : 〈X , (A− A∗)X 〉H = 0

}
.

From above Theorem, It follows that WH(A) ∩ R is connected.
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Connectedness properties

Lemma (S., 2019)

Let A ∈ Mn(H) and let L be any line parallel to Y -axis. Then
W+

H (A) ∩ L is connected.

Proposition (S., 2019)

Let V be a finite subset of C. Then

Conv
(
ΩV
)

= Conv
(
ΩConv(V)

)
.

Here Conv(·) is an abbreviation for ‘Convex hull of’.



Result for M2(H)

Lemma (S., 2019)

Let A ∈ M2(H). Then every section of WH(A) is convex.

proof

By the canonical form of [Brenner, 1951] there exist a unitary
U ∈ M2(H) such that

A = U∗
[
z1 p
0 z2

]
U,

for some p ∈ H and z1, z2 ∈ C+. Now we show that the

quaternionic numerical range of

[
z1 p
0 z2

]
is convex. Let[

x
y

]
∈ SH2 . Then consider the following cases.
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Result for M2(H)

Case(1): z1 = z2 = z := a + ib, p = 0

〈 [x
y

]
,

[
a + ib o

0 a + ib

] [
x
y

] 〉
H = a(|x |2 + |y |2) + bmx ,y ,

where mx ,y = xix + y iy . Clearly, Re(mx ,y ) = 0 and |mx ,y | ≤ 1.
That is,{

mx ,y : |x |2 + |y |2 = 1
}
⊆
{
q ∈ H : Re(q) = 0, |q| ≤ 1

}
.

If q ∈ H \ {0} such that Re(q) = 0 and |q| ≤ 1, then ∃ s 6= 0
with s−1is = q

|q| . Take

x =

√
1 + |q|

2
· s

|s|
, y =

√
1− |q|

2
· s

|s|
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Result for M2(H)

Then |x |2 + |y |2 = 1 and mx ,y = q.

If q = 0, then by choosing x = 1√
2
, y = j 1√

2
we get mx ,y = 0.

This shows that{
mx ,y : |x |2 + |y |2 = 1

}
=
{
q ∈ H : Re(q) = 0, |q| ≤ 1

}
.

Therefore,

WH(A) =
{
a + bm : Re(m) = 0 with 0 ≤ |m| ≤ 1

}
.

It is the solid sphere in R4 with radius b and center at
(a, 0, 0, 0). So WH(A) is convex.

In particular, W+
H (A) is the line segment joining Re(z) and z ,

which is convex.
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Result for M2(H)

Graph of W+
H (A):

re(z)

z



Result for M2(H)

Case(2): z1 = a1 + ib1, z2 = a2 + ib2, p = 0

〈 [x
y

]
,

[
a1 + ib1 o

0 a2 + ib2

] [
x
y

] 〉
H = a1|x |2+a2|y |2+b1xix+b2y iy .

Suppose its imaginary part is zero, i.e.,

b1xix = −b2y iy . (1)

Since |x |2 + |y |2 = 1, we get

|x | =

√
b2

b1 + b2
, |y | =

√
b1

b1 + b2
. (2)

From Equations (1), (2), we get

x−1ix + y−1iy = 0. (3)
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Result for M2(H)

In fact, Equation (1) ⇔ Equations (2) & (3).

The only choice is,

x =

√
b2

b1 + b2
, y =

√
b1

b1 + b2
.

Therefore,

WH(A) ∩ R =
{
v :=

a1b2 + a2b1
b1 + b2

}
.

Claim: W+
H (A) = Conv

(
{z1, z2, v}

)
.

In particular, if we take x , y ∈ C with |x2 + |y |2 = 1, then
z1|x |2 + z2|y |2 ∈W+

H (A).
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Result for M2(H)

We show that the line segment joining v and z1 is in W+
H (A).

Let ut := a1(1− t) + vt, xt =
√

a2−ut
a2−a1 and yt = j

√
ut−a1
a2−a1 for

t ∈ [0, 1]. Then |xt |2 + |yt |2 = 1 with

〈 [xt
yt

]
,

[
a1 + ib1 0

0 a2 + ib2

] [
xt
yt

] 〉
H = (a1 + ib1)(1− t) + vt.

Similarly, the line joining v and z2 is in W+
H (A).

By the fact
that W+

H (A) ∩ L is connected, we get that

Conv({z1, z2, v}) ⊆W+
H (A).

Finally, the equality holds since

W+
H (A) ⊆ Conv(Ω{z1,z2,v}) = Conv(ΩConv({z1,z2,v})).
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√

a2−ut
a2−a1 and yt = j

√
ut−a1
a2−a1 for

t ∈ [0, 1]. Then |xt |2 + |yt |2 = 1 with

〈 [xt
yt

]
,

[
a1 + ib1 0

0 a2 + ib2

] [
xt
yt

] 〉
H = (a1 + ib1)(1− t) + vt.

Similarly, the line joining v and z2 is in W+
H (A). By the fact

that W+
H (A) ∩ L is connected, we get that

Conv({z1, z2, v}) ⊆W+
H (A).

Finally, the equality holds since

W+
H (A) ⊆ Conv(Ω{z1,z2,v}) = Conv(ΩConv({z1,z2,v})).



Result for M2(H)

Graph of W+
H (A):

v

z2

z1



Result for M2(H)

Case(3): z1 = z2 = 0.

By Young’s Inequality, we have∣∣∣〈 [x
y

]
,

[
0 p
0 0

] [
x
y

] 〉
H

∣∣∣ =
∣∣xpy ∣∣

≤ |p| · |x |
2 + |y |2

2

=
|p|
2
.

Let |p| = 1. Then for any q with |q| ≤ 1
2 , we have

q = remqθ, 0 ≤ r ≤ 1
2 where mq = Im(q)

|Im(q)| . If we choose

x = e−mqθcosα and y = p−1sinα such that sin 2α = 2r ≤ 1 and
0 ≤ α ≤ π

4 , then xpy = q.
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Result for M2(H)

It shows that WH(A) = {q ∈ H : |q| ≤ 1
2}. If |p| 6= 1, then we

have

WH(A) = WH

([0 p
|p|

0 0

])
|p| =

{
q ∈ H : |q| ≤ |p|

2

}
.

Therefore,

W+
H (A) =

{
z ∈ C+ : |z | ≤ |p|

2

}
.

It is the upper half of the disc with radius |p|2 .



Result for M2(H)

Graph of W+
H (A):

|p|
2



Result for M2(H)

Case(4): z1 = a1 + ib1, z2 = a2 + ib2, p 6= 0

Since Γ :=
{
u + τ : u ∈W+

H (

[
z1 0
0 z2

]
), τ ∈ C+ with |τ | ≤ |p|2

}
is convex and W+

H (A) ∩ L is connected, it shows that W+
H (A) is

convex.

Graph of W+
H (A): It is clear that for any λ ∈W+

H (A), we have

λ = xz1x + yz2y + xpy , for some

[
x
y

]
∈ SH2

and |λ| ≤ max{|z1|, |z2|}+ |p|
2 .

Therefore, W+
H (A) is a convex subset of upper half of the disc

with radius R := max{|z1|, |z2|}+ |p|
2 .



Result for M2(H)

There is no guarantee that either Re(p) + |Im(p)|i or |p|2 i lies in
W+

H (A). The following are the examples of three different
possibilities.

Example 1

If z1 = −1 + i , z2 = 1 + i and p = 3− 4k , then 3 + 4i /∈W+
H (A),

but |p|2 i = 5
2 i ∈W+

H (A).

R z2z1

5
2 i
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Result for M2(H)

Example 2

If z1 = 3 + 4i , z2 = 20 + i , p = 16j , then

neither re(p) + |im(p)|i = 16i nor
|p|
2
i = 8i lies in W+

H (A).

.

R
z2

z18i

16i



Result for M2(H)

Example 3

Let z1 = 3 + 4i , z2 = −2 + 5i and p = 1− j , then

re(p) + |im(p)|i = 1 + i ∈W+
H (A), but

|p|
2
i =

i√
2
/∈W+

H (A).

R z2

z1

(1 + i)
i√
2



Toeplitz-Hausdorff like theorem

Theorem (S., 2019)

Let A ∈ Mn(H). Then every section of WH(A) is convex.

Proof
Suppose z ,w ∈W+

H (A), then

z = 〈X ,AX 〉H, w = 〈Y ,AY 〉H

for some X ,Y ∈ SHn . We show that the line segment joining z
and w contained in W+

H (A). Let V be the two-dimensional
subspace generated by z ,w , which is isomorphic to H2 and let
P be the projection of H2 onto V .



Toeplitz-Hausdorff like theorem

Then PAP
∣∣
V
∈ M2(H) with

〈X ,PAPX 〉H = z , 〈Y ,PAPY 〉H = w .

This shows that z ,w ∈W+
H
(
PAP

∣∣
V

)
. Since W+

H (PAP
∣∣
V

) is
convex (from previous Lemma), the line segment joining z and
w is contined in W+

H (PAP
∣∣
V

) ⊆W+
H (A).

Hence W+
H (A) is convex.
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